NOVEL PREPARATION OF 1,2,4-OXADIAZOLES FROM N-BENZOYLAMIDINES 1)

Toshio FUCHIGAMI and Keijiro ODO

Department of Electrochemistry, Faculty of Engineering

Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152

A new efficient procedure for the conversion of N-benzoy1-amidines with t-buty1 hypochlorite and sodium hydroxide to 1,2,4-oxadiazoles has been devised.

In a previous communication, 2) we have reported that the thermolysis of acyl derivatives of N-benzimidoy1-S,S-dimethylsulfilimine gives rise to 1,2,4-oxadiazoles.

In this communication, we wish to report on the preparation of 1,2,4-oxadiazoles [IV] from N-benzoyl-N'-chlorobenzamidines [III].

Benzoyl derivatives of [I] were easily obtained by the reaction of [I] with benzoyl chloride in the presence of two equivalents of 2N sodium hydroxide.

3,5-Diphenyl-1,2,4-oxadiazole was prepared in good yield by the following procedure. To a stirred suspension of N-benzoylbenzamidine (1.12 g, 5 mmol) in ethanol was gradually added dropwise t-butyl hypochlorite (0.60 g, 5.5 mmol) at $0\sim5^{\circ}$ C. After the mixture had been stirred at the same temperature for 30 minutes, 4 ml of 2N sodium hydroxide was added. When the mixture was warmed at 70° C, white needlelike crystals began to appear. After 5 minutes, the mixture was cooled, and then precipitate was separated by filtration to give 0.77 g of IVa, mp 108° C. IVa was

obtained further by the addition of water (10 ml) to the filtrate, 0.11 g, mp 105~ The total yield was 80%. Recrystallization from aqueous ethanol gave a pure product, mp 108°C. The structure was confirmed by elemental analysis, IR and mass spectra. By the same procedure, N-benzoy1-p-toluamidine was converted to the corresponding 1,2,4-oxadiazole [IVb].

This interesting ring formation may proceed via a nitrene intermediate as proposed by Moriarty et al. 3) and us. 2)

	7	Γable1.	Physica1	Properties of	[II], [III]], and [[IV]	
Compd	R	Yield	Мр	IR (cm ⁻¹)	Anal (Calcd %)			
•		(%)	(°C)	√ NH	С	Н	N	C1
IIa	Н	74	98 (98) ⁴⁾	3150 3300 3350	-	-	-	-
IIb	Ме	82	129~130	3150 3250 3350	75.79 (75.61)	5.97 (5.92)	11.64 (11.76)	-
IIIa	Н	-	98	3300	-	-	-	12.90 (13.70)
IIIb	Me	-	129~130	3200	-	-	10.24 (10.27)	13.96 (13.00)
IVa	Н	80	108 (108) ⁵⁾	absent	75.74 (75.66)	4.56 (4.54)	12.67 (12.60)	-
IVb	Me	46	103~104 (103) ⁶)	absent	76.26 (76.25)	5.02 (5.12)	11.92	-

References

- N-Halo Compounds of Cyanamide Derivatives. IV (Part 94 of Studies of Cyanamide Derivatives).
- T. Fuchigami and K. Odo, Chem. Lett., 247 (1974). 2)
- R.M. Moriarty, J.M. Kliegman, and C. Shovlin, J. Amer. Chem. Soc., 89, 5958 (1967). 3)
- D.A.Peak, J.Chem.Soc., 215 (1953). 4)
- E.Beckmann and K.Sandel, Ann.Chem., 296, 285 (1897). 5)
- L.H. Schubart, Ber., 19, 1490 (1886). 6)